Chris Perkins
06/14/2016

Implementation of QT Algorithm for STAR MTD : Run 2013

QT Code Version: 0x6¢
MCS File: qt32b_l0_v6_c.mcs

Description:

This algorithm outputs the two largest TAC Pair Sums, each corrected by the
TAC Pair Differences, from eight MTD modules and includes an ID for each TAC Pair
Sum.

Each MTD module has an East and West end (J2 and J3), which are connected to
either the first two or second two channels (2x ADC and 2x TAC) on any QT8 daughter
card. This algorithm assumes the standard input configuration where channels 1-4 are
signal inputs (ADC) and channels 5-8 are TAC inputs corresponding to channels 1-4.

An outline of the steps followed by this algorithm are listed below, with details of
each step described later in this section:

Slew Correct each TAC Channel

Apply channel masks

Modified “Good Hit” Requirement

Form TAC Pair Sums (J2 + J3) and TAC Pair Differences (J2 —J3)
Correct TAC Pair Sums

Truncate Corrected TAC Pair Sums

Find two largest truncated, corrected TAC Pair Sums and assign IDs

NNk W=

A slew correction is applied to each TAC channel based on the value of the
corresponding ADC channel. In the current implementation, there are a maximum of
eight ADC bins. The ADC bin limits for each TAC channel can be defined
independently. The ADC bin limits must cover the full available range of ADC values
[0:4095] and must not overlap. Therefore any ADC value falls into exactly one ADC
bin. The determination of which bin an ADC value falls into is done using the following
logic:

Bin(X) = bin_limit(X-1) < ADC <= bin_limit(X)

Note that the lower limit of Bin(0) is hardwired to be 0, but the user has the ability
to set all the other limits.

A slew correction offset is associated with each ADC bin of each channel. The
slew correction offset is a signed integer with a range [-256 : 255]. The slew correction
offset for this corresponding bin is then added to the raw TAC value. If the result is
negative, a slew corrected TAC value of ‘0’ is used. If the result is greater than 4095, a
slew corrected TAC value of ‘4095’ is used. This ensures that the slew corrected TAC
values have the same range as the raw TAC values (ie [0:4095]).

The standard QT mask registers can be used for each channel to mask that
channel from the trigger but retain the data in the datastream. Note that separate masks
must be used for ADC and TAC channels. Also note that the channel masks are applied
AFTER the slew correction.

This algorithm uses a modified “Good Hit” definition, which requires that the
TAC value for a channel is greater than some TAC_Min and less than some TAC_Max.
Note that this modified “Good Hit” definition doesn’t include any requirement on the
ADC value. For a module to be considered for the two largest TAC Pair Sums, both J2
and J3 must satisfy the “Good Hit” requirement for that module. If either the J2 or J3
input of a module doesn’t satisfy the “Good Hit” requirement, the corrected TAC Pair
Sum for that module will be ‘0’. If no modules satisfy the “Good Hit” requirement, both
of the maximum TAC Pair Sums will be ‘0’.

After the TAC Difference (J2 — J3) is calculated, its value is checked to ensure
that it is within some range. This range is specified in one register that designates the
absolute value of the range. If the following is not true :

-1 * TAC_Diff_Range_Abs < TAC Difference < TAC_Diff_Range_Abs
then the corrected TAC Sum is set to zero. The value of TAC_Diff_Range_Abs is a 10
bit unsigned integer [0:1023].

The raw TAC Pair Sum (J2 + J3) is corrected according to the following:
Corrected_TAC_Sum = Raw_TAC_Sum + (Raw_TAC_Diff * Correction_Factor / 32)
+ Correction_Offset_PairX As previously stated, the corrected TAC Pair Sum is set
to zero if either J2 or J3 doesn’t satisfy the “Good Hit” requirement or the TAC Pair
Difference falls outside the required range. The value of Correction_Factor is a 4 bit
unsigned integer [0:15]. Each Correction_Offset_PairX is a 10 bit unsigned integer
[0:1023].

The corrected TAC Pair Sum is then truncated to 10 bits. Bits [3:12] (starting
from zero) are kept.

The two largest truncated, corrected TAC Pair Sums are then found and output.
Each channel pair (MTD module) is assigned an ID as follows:

QTS8A, ADC Ch0/1, TAC Ch4/5 = 1

QT8A, ADC Ch2/3, TAC Ch6/7 = 2

QT8B, ADC Ch0/1, TAC Ch4/5 =1
QT8B, ADC Ch2/3, TAC Ch6/7 = 2
QT8C, ADC Ch0/1, TACCh4/5 = 1or2
QT8C, ADC Ch2/3, TAC Ch6/7 = 3 or4

QT8D, ADC Ch0/1, TAC Ch4/5 = 3

QT8D, ADC Ch2/3, TAC Ch6/7 = 4
The first pair (J2, J3) of Daughter Card ‘C’ can either be assigned ID ‘1’ or ‘2’ depending
on the sign of the TAC Difference. Similarly, the second pair of Daughter Card ‘C’ can
either be assigned ID ‘3’ or ‘4’ depending on the sign of the TAC Difference. If
(J2-J3) >=0, the ID for Daughter Card ‘C’ is ‘1’ or ‘3’ (East). If (J2-J3) <0, the ID for
Daughter Card ‘C’ is ‘2’ or ‘4’ (West).

In the case of equal Corrected TAC Pair Sums between multiple channel pairs, the
resulting ID value can be found using the pseudo-code listed later on. The two pairs
within one QT8 daughter card are first ordered and IDs assigned (see pseudo-code

below). The maximums are then found between the locally ordered sums and the
incoming sums from previous daughters (also see pseudo-code below).

Inputs:
QTS8A :
Ch 0/1
Ch2/3
Ch 4/5
Ch 6/7
QT8B :
Ch 0/1
Ch 2/3
Ch 4/5
Ch 6/7
QT8C:
Ch 0/1
Ch2/3
Ch 4/5
Ch 6/7
QT8D :
Ch 0/1
Ch 2/3
Ch 4/5
Ch 6/7

: MTD Position 1 or 2 Module J2/J3 ADC
: MTD Position 5 or 4 Module J2/J3 ADC
: MTD Position 1 or 2 Module J2/J3 TAC
: MTD Position 5 or 4 Module J2/J3 TAC

: MTD Position 1 or 2 Module J2/J3 ADC
: MTD Position 5 or 4 Module J2/J3 ADC
: MTD Position 1 or 2 Module J2/J3 TAC
: MTD Position 5 or 4 Module J2/J3 TAC

: MTD Position 3 Module J2/]13 ADC
: MTD Position 3 Module J2/J3 ADC
: MTD Position 3 Module J2/J3 TAC
: MTD Position 3 Module J2/J3 TAC

: MTD Position 1 or 2 Module J2/J3 ADC
: MTD Position 5 or 4 Module J2/J3 ADC
: MTD Position 1 or 2 Module J2/J3 TAC
: MTD Position 5 or 4 Module J2/J3 TAC

Registers (1 Set Per Daughter Card, GUI Register Name in bold):
Alg. Reg. 1 (Reg 14): “Good Hit” TAC_Min (12 bits, unsigned)
Alg. Reg. 2 (Reg 15): “Good Hit” TAC_Max (12 bits, unsigned)
Alg. Reg. 3 (Reg 16): Correction_Factor (4 bits, unsigned)
Alg. Reg. 4 (Reg 17): Correction_Offset_Pair(0 (10 bits, unsigned)
Alg. Reg. 5 (Reg 18): Correction_Offset_Pairl (10 bits, unsigned)
Alg. Reg. 6 (Reg 19): TAC_Diff_Range_Abs (10 bits, unsigned)

LUT:
TAC timing adjustment/ADC Pedestal subtraction for each channel

Slew Correction: 8 ADC Bins/Slew Correction Offsets per TAC channel
Algorithm Latch: 4

L0 Output to DSM:
(0-9) : Maximum Corrected TAC Pair Sum (J2 + J3)

(10-11) : Maximum Corrected TAC Pair ID

(12-15) : ‘O’

(16-25) : Second Maximum Corrected TAC Pair Sum (J2 + J3)
(26-27) : Second Maximum Corrected TAC Pair ID

(28-31) : O

Pseudo-code for ordering local QT8 Pair Sums and assigning IDs,
Daughter Cards ‘A’, ‘B’, ‘D’ :

If (LOCAL_SUMO > LOCAL_SUM1) then
LOCAL_MAX_SUMO = LOCAL_SUMO
LOCAL_MAX_IDO = ‘1’ for ‘A’ and ‘B’, ‘3’ for ‘D’
LOCAL_MAX_SUMI1 = LOCAL_SUM1
LOCAL_MAX_IDI1 = 2’ for ‘A’ and ‘B’, ‘4’ for ‘D’

Else
LOCAL_MAX_SUMO = LOCAL_SUM1
LOCAL_MAX_IDO = 2’ for ‘A’ and ‘B’, ‘4’ for ‘D’
LOCAL_MAX_SUMI1 = LOCAL_SUMO
LOCAL_MAX_IDI1 = ‘1’ for ‘A’ and ‘B’, ‘3’ for ‘D’

End if;

Daughter Cards ‘C’ :

If (LOCAL_SUMO > LOCAL_SUM1) then
LOCAL_MAX_SUMO = LOCAL_SUMO
If (TAC_DIFFO >= 0) then
LOCAL _MAX_ID0= ‘1"
Else
LOCAL_MAX_ID0 = 2’
End if;
LOCAL_MAX_SUMI1 =LOCAL_SUMI1
If (TAC_DIFF1 >= 0) then
LOCAL_MAX_IDI1 = ‘3’
Else
LOCAL_MAX_IDI1 = ‘4’
End if;
Else
LOCAL_MAX_SUMO = LOCAL_SUM1
If (TAC_DIFF1 >=0) then
LOCAL_MAX_IDO = ‘3’
Else
LOCAL_MAX_IDO = ‘4’
Endif;
LOCAL_MAX_SUMI1 = LOCAL_SUMO
If (TAC_DIFFO >= 0) then
LOCAL_MAX_IDI1 =1’
Else
LOCAL_MAX_IDI1 = 2’
End if;
End if;

Pseudo-code for ordering between daughter cards:
First Highest Corrected TAC Pair Sum :

If (LOCAL_MAX_SUMO > INPUT_MAX_SUMO) then
OUTPUT_SUMO = LOCAL_MAX_SUMO
OUTPUT_ID0O = LOCAL_MAX_IDO0

Else
OUTPUT_SUMO = INPUT_MAX_SUMO
OUTPUT_IDO = INPUT_MAX_IDO

End if;

Second Highest Corrected TAC Pair Sum :

If (LOCAL_MAX_SUMO > INPUT_MAX_SUMO) then
If (LOCAL_MAX_SUMI > INPUT_MAX_SUMO) then
OUTPUT_SUMI1 = LOCAL_MAX_SUMI1
OUTPUT_ID1 = LOCAL_MAX_ID1
Else
OUTPUT_SUMI1 = INPUT_MAX_SUMO
OUTPUT_ID1 = INPUT_MAX_IDO
End if;
Else
If (LOCAL_MAX_SUMO > INPUT_MAX_SUM1) then
OUTPUT_SUMI1 = LOCAL_MAX_SUMO
OUTPUT_ID1 = LOCAL_MAX_IDO0O
Else
OUTPUT_SUMI1 = INPUT_MAX_SUMI1
OUTPUT_ID1 = INPUT_MAX_ID1
End if;
End if;

Actions

Tick QTS8A QTS8B QT8C QTS8D
1 Latch Inputs Latch Inputs Latch Inputs Latch Inputs
2 Find/Latch ADC Bins Find/Latch ADC Bins Find/Latch ADC Bins Find/Latch ADC Bins
Delay TAC Values Delay TAC Values Delay TAC Values Delay TAC Values
3 Calculate/Latch Calculate/Latch Calculate/Latch Calculate/Latch
Slew Corrected TACs Slew Corrected TACs Slew Corrected TACs Slew Corrected TACs
4 Overflow/Underflow/Mask Overflow/Underflow/Mask Overflow/Underflow/Mask Overflow/Underflow/Mask
Slew Corrected TACs Slew Corrected TACs Slew Corrected TACs Slew Corrected TACs
5 TAC >R1 ->TAC_MIN_GOOD TAC >R1 ->TAC_MIN_GOOD TAC >R1 ->TAC_MIN_GOOD TAC >R1 ->TAC_MIN_GOOD
TAC <R2 5 TAC_MAX_GOOD | TAC <R2 -TAC_MAX_GOOD TAC <R2 -5TAC_MAX_GOOD TAC <R2 -5 TAC_MAX_GOOD
Ch4 + Ch5 — Suml Ch4 + Ch5 — Suml Ch4 + Ch5 — Suml Ch4 + Ch5 — Suml
Ch6 + Ch7 — Sum2 Ch6 + Ch7 — Sum2 Ch6 + Ch7 — Sum2 Ch6 + Ch7 — Sum2
Ch4 - Ch5 — Diffl Ch4 - Ch5 — Diffl Ch4 - Ch5 — Diffl Ch4 - Ch5 — Diff1
Ch6 — Ch7 — Diff2 Ch6 — Ch7 — Diff2 Ch6 — Ch7 — Diff2 Ch6 — Ch7 — Diff2
Ch5 > Ch4 — Diff1_Neg Ch5 > Ch4 — Diff1_Neg Ch5 > Ch4 — Diff1_Neg Ch5 > Ch4 — Diff1_Neg
Ch7 > Ch6 — Diff2 Neg Ch7 > Ch6 — Diff2 Neg Ch7 > Ch6 — Diff2 Neg Ch7 > Ch6 — Diff2 Neg
6 Diff1 * Factor — Multl Diff1 * Factor — Multl Diff1 * Factor — Multl Diff1 * Factor — Multl
Diff2 * Factor — Mult2 Diff2 * Factor — Mult2 Diff2 * Factor — Mult2 Diff2 * Factor — Mult2
Delay : Sum1, Sum2, Diff1, Diff2 Delay : Sum1, Sum2, Diff1, Diff2 Delay : Sum1, Sum2, Diff1, Diff2 Delay : Sum1, Sum2, Diff1, Diff2
Diff1_Neg, Diff2_Neg, Diff1_Neg, Diff2_Neg, Diff1_Neg, Diff2_Neg, Diff1_Neg, Diff2_Neg,
Good Hits Good Hits Good Hits Good Hits
7 Calculate/Latch Calculate/Latch Calculate/Latch Calculate/Latch
Corrected TAC Sums — Corrected TAC Sums — Corrected TAC Sums — Corrected TAC Sums —
Sum1_Corr, Sum2_Corr Suml1_Corr, Sum2_Corr Sum1_Corr, Sum2_Corr Sum1_Corr, Sum2_Corr
Delay : Diffl_Neg, Diff2_Neg Delay : Diffl_Neg, Diff2_Neg Delay : Diffl_Neg, Diff2_Neg Delay : Diffl_Neg, Diff2_Neg
8 Truncate Corrected TAC Sums Truncate Corrected TAC Sums Truncate Corrected TAC Sums Truncate Corrected TAC Sums
Delay : Diffl_Neg, Diff2_Neg Delay : Diff1_Neg, Diff2_Neg Delay : Diffl_Neg, Diff2_Neg Delay : Diffl_Neg, Diff2_Neg
9 Order Local Corrected TAC Sums Corrected Sum—Sum_Dell Corrected Sum—Sum_Dell Corrected Sum—Sum_Dell
and assign IDs Diff_Neg— Diff_Neg_Dell Diff_Neg— Diff_Neg_Dell Diff_Neg— Diff_Neg_Dell
10 Find Global MAX TAC Sums Corrected Sum—Sum_Del2 Corrected Sum—Sum_Del2 Corrected Sum—Sum_Del2
Diff Neg— Diff Neg Del2 Diff Neg— Diff Neg Del2 Diff Neg— Diff Neg Del2
11 Latch Out MAX Sums/IDs Corrected Sum—Sum_Del3 Corrected Sum—Sum_Del3 Corrected Sum—Sum_Del3
Diff Neg— Diff Neg Del3 Diff Neg— Diff Neg Del3 Diff Neg— Diff Neg Del3
12 - Latch In Sums/IDs Corrected Sum—Sum_Del4 Corrected Sum—Sum_Del4
Order Local Delayed (Del3) Diff Neg—> Diff_Neg_Del4 Diff Neg— Diff_Neg_Del4
Corrected TAC Sums and assign IDs
13 - Find Global MAX TAC Sums Corrected Sum—Sum_Del5 Corrected Sum—Sum_Del5
Diff Neg— Diff Neg Del5 Diff Neg— Diff Neg Del5
14 - Latch Out MAX Sums/IDs Corrected Sum—Sum_Del6 Corrected Sum—Sum_Del6

Diff Neg— Diff Neg Del6

Diff Neg— Diff Neg Del6

Tick QT8A QT8B QT8C QT8D
15 - - Latch In Sums/IDs Corrected Sum—Sum_Del7
Order Local Delayed (Del6) Diff_Neg— Diff Neg Del7
Corrected TAC Sums and assign IDs
16 - - Find Global MAX TAC Sums Corrected Sum—Sum_Del8
Diff Neg— Diff Neg Del8
17 - - Latch Out MAX Sums/IDs Corrected Sum—Sum_Del9
Diff Neg— Diff Neg Del9
18 - - - Latch In Sums/IDs
Order Local Delayed (Del9)
Corrected TAC Sums and assign IDs
19 - - - Find Global MAX TAC Sums
20 - - - Latch Out MAX Sums/IDs

